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Abstract
Taking simultaneously into account the electron-injected current from one
normal-metal (N) electrode and the hole-injected current from the other
N electrode, we study the coherent tunnelling conductance and quantum
interference effects in N/d-wave superconductor (S)/N double tunnel junctions.
It is found that oscillations of all quasiparticle transport coefficients and the
conductance spectrum with quasiparticle energy and thickness of the d-wave S
depend to a great extent on the crystal orientation of the d-wave S. The zero-
bias conductance peak is gradually lowered with increasing barrier strength
and/or temperature, its magnitude exhibiting damped oscillatory behaviour with
thickness of S.

1. Introduction

Quantum interference effects of the quasiparticle transport in double tunnel junctions consisting
of superconductor (S) and normal metal (N) have attracted much attention since early
experiments by Tomasch [1]. The coherent tunnelling has been studied in S/N/S double
tunnel junctions by considering current-carrying Andreev bound states [2, 3] and multiple
Andreev reflections (AR) [4–7]. The geometric resonance nature of differential conductance
oscillations in the S/N/S [8–10], N/S/N [11], and ferromagnet (F)/F/S [12] double tunnel
junctions has been ascribed to the quasiparticle interference in the central film. Recently, the
McMillan–Rowell oscillations were observed in S/N/S edge junctions with S having d-wave
symmetry, and used for measurements of the superconducting gap and Fermi velocity [13].

Very recently, the study of the coherent quantum transport has been extended to F/s-wave
S/F [14–16] double tunnel junctions. It was pointed out [15] that for an F/S/F double tunnel
junction, if only the injection of electrons from the left-hand F to S is taken into account, the
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current continuous condition cannot be satisfied, which arises from the creation and annihilation
of Cooper pairs in S. To solve this difficulty, in the presence of a voltage drop between two
F electrodes, not only the electron injection from one F electrode to S, but also hole injection
from the other F electrode to S, needs to be taken into account [11, 15]. Several important
features have been revealed. The quantum interference effects of quasiparticles in S give
rise to oscillations of reflection and transmission probabilities as well as conductances with
energy above the superconducting gap,and the AR and corresponding transmission coefficients
show periodic vanishing phenomena. In the tunnel limit, all the reflection and transmission
coefficients exhibit some sharp peaks,corresponding to a series of bound states of quasiparticles
in S. A similar but somewhat different approach [16] was applied to the same F/S/F structure,
in which both electron and hole injections from the left-hand F to S were taken into account.
If the exchange splitting of F is taken to be zero, both the approaches [15, 16] are equivalent to
each other, reducing to the Lambert approach to the N/S/N structures [11]. The theories above
dealt with isotropic s-wave S, and the quantum coherent effects in the d-wave S interlayer have
not yet been studied. It is known that the transport properties in the d-wave S junctions are
quite different from the s-wave S junctions. In a–b plane junctions of the d-wave S, not only
the magnitude of the pair potential but also the orientation of the S crystal with respect to the
interface normal influence significantly the quasiparticle interference in the junction. Owing
to the orientation dependence of the pair potential, a most remarkable effect in tunnelling
experiments of the high-Tc S is the existence of the zero-bias conductance peak (ZBCP) for
α = π/4 where α is the angle between the a axis of the S crystal and the interface normal with
the c axis fixed within the interface [2, 17, 18]. It was pointed out by a theory of tunnelling
conductance [19] that the origin of the ZBCP is the zero-energy state (ZES) formed on the
interface of the d-wave S where quasiparticles feel the change in sign of the pair potential
before and after scattering [20]. It is interesting to clarify how the ZES influences the coherent
quantum transport in N/d-wave S/N junctions.

In this paper, we will present a theory of the coherent quantum transport in N/d-wave
S/N double tunnel junctions, and derive a general formula for the differential conductance
in terms of reflection and transmission coefficients. We take simultaneously into account the
electron-injected current from one N electrode to S and the hole-injected current from the other
N electrode to S, as shown in figures 1(a) and (b) (or 1(d) and (c)). In this case, the chemical
potential in S is determined by current continuous conditions, i.e., the current from the left-
hand N to S via the left-hand N/S interface must be equal to that from S to the right-hand
N via the right-hand interface. In the present coherent transport, since the coherent length
in the d-wave S is much shorter than that in the s-wave S, the quasiparticle interference and
resonant tunnelling play an important role, exhibiting new quantum effects on the tunnelling
conductance in the N/d-wave S/N structures.

2. Quasipartical transport coefficients

Consider an N/d-wave S/N double tunnel junction, in which the left- and right-hand electrodes
are made of the same N and they are separated from the central S by two thin insulating
interfaces, respectively. The N layers are assumed to be the y–z plane and to be stacked
along the x direction. The a–b plane of the d-wave S is normal to the y–z plane. The
two very thin insulating layers at x = 0 and L can be modelled to be two δ-type barrier
potentials: U(x) = U0[δ(x) + δ(x − L)], where L is the thickness of S, and U0 depends on
the product of barrier height and width. As in the previous works [21, 22], we neglect for
simplicity the self-consistency of spatial distribution of the pair potential in S and take it as a
step function: �(x, θ) = �±�(x)�(L − x) where �± = � cos(2θ ∓ 2α) [19] correspond
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(a) (c)

(b) (d)

Figure 1. Schematic illustration of reflections and transmissions of quasiparticles in an N/d-wave
S/N structure.

to the pair potentials for electron-like and holelike quasiparticles, respectively, with θ the
angle between the quasiparticle momentum and the N/S interface normal. We assume that the
temperature-dependent gap of S is given by � = �0 tanh(1.74

√
Tc/T − 1) [23], where �0 is

the superconducting gap at T = 0, and Tc is the superconducting critical temperature.
We adopt the Bogoliubove–de Gennes (BdG) approach [24] to study the transport of

quasiparticles in the N/d-wave S/N structure. The two-component BdG equation for electron-
like and holelike quasiparticle wavefunctions (u, v) is given by[

H0(r) �(x, θ)

�∗(x, θ) −H ∗
0 (r)

] [
u(x, θ)

v(x, θ)

]
= E

[
u(x, θ)

v(x, θ)

]
, (1)

where H0(r) = −h̄2∇2
r /2m +V (r)− EF with V (r) the usual static potential, and the excitation

energy E is measured relative to the Fermi energy EF.
Consider an electron incident on the interface at x = 0 from the left-hand N at angle

θ to the interface normal. As shown in figure 1(a), there are four possible trajectories: the
normal refection (ree), AR (rhe), and transmissions to the right-hand electrode as an electron-
like quasiparticle (te′e) and as a holelike quasiparticle (th′e), where subscripts e (h) and e′ (h′)
indicate the electron (hole) in the left- and right-hand N electrodes, respectively. With general
solutions of the BdG equation (1), the wavefunctions in the three regions have the following
form:

�I =
(

1
0

)
eiq+ x cos θ + rhe

(
0
1

)
eiq−x cos θ + ree

(
1
0

)
e−iq+ x cos θ , (2)

for x < 0;

�II = e

(
u+eiφ+

v+

)
eik+ x cos θ + f

(
v−eiφ−

u−

)
e−ik− x cos θ

+ g

(
u−eiφ−

v−

)
e−ik+ x cos θ + h

(
v+eiφ+

u+

)
eik−x cos θ , (3)

for 0 < x < L; and

�III = te′e

(
1
0

)
eiq+x cos θ + th′e

(
0
1

)
e−iq− x cos θ , (4)
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for x > L. Here q± = √
2m(EF ± E)/h̄ are the wavevectors for the electron and hole in

N and k± =
√

2m(EF ± √
E2 − |�±|2)/h̄ and k± =

√
2m(EF ± √

E2 − |�∓|2)/h̄ are the

wavevectors for the electron-like and holelike quasiparticles in S. (u±)2 = 1 − (v±)2 =
(1 +

√
1 − |�±/E |2)/2 and φ± = cos−1[cos 2(θ ∓ α)/| cos 2(θ ∓ α)|].

All the coefficients in equations (2)–(4) can be determined by boundary conditions at
x = 0 and L. The matching conditions for the wavefunctions are given by �II(0) = �I(0),
(d�II/dx)x=0 − (d�I/dx)x=0 = 2mU0�I(0)/h̄2, �III(L) = �II(L), and (d�III/dx)x=L −
(d�II/dx)x=L = 2mU0�III(L)/h̄2. The probabilities of the AR, normal reflection, and
transmission from the left-hand N to the right-hand N as an electron and a hole are given
by Rhe = (q−/q+)|rhe|2, Ree = |ree|2, Te′e = |te′e|2, and Th′e = (q−/q+)|th′e|2, respectively.
Quasiparticle transport coefficients shown in figures 1(b)–(d) can be obtained by similar
calculations. Since analytical results for these coefficients are tedious, we only give their
numerical results below. From electron–hole scattering symmetries as well as our calculation
results, we have Ree = Re′e′ , Rhh = Rh′h′ , Reh = Rhe = Re′h′ = Rh′e′ , and Te′e = Tee′ ,
Th′h = Thh′ , Th′e = Teh′ = Te′h = The′ . For either α = 0 or π/4, we have |�+| = |�−|, so that
k+ = k+ and k− = k−. In these cases, it is easily shown analytically that all the coefficients of
electron–hole transformation such as Rhe and Th′e are proportional to sin2[(k+ −k−)L cos θ/2],
which vanish if (k+ − k−)L cos θ = 2nπ with n an arbitrary positive integer. From the
expressions for k+ and k− given above, this condition is equivalent to[

E

�(θ, α)

]2

=
[

2πnEF/�(θ, α)

kF L cos θ

]2

+ 1, (5)

under which there is neither an AR nor a hole (electron) transmission so that the quasiparticles
pass directly from one N electrode to the other, not converting to the Cooper pair in
S. The oscillation period is increased with E , approaching 2π EF/[�(θ, α)kF L cos θ ] for
E � �(θ, α).

The calculated results for these coefficients as a function of E are plotted in figure 2 (the
left-hand column for α = θ = 0 and the right-hand one for α = θ = π/4) with different
barrier strength z0 = mU0/(h̄2kF). All of them exhibit oscillatory behaviour due to the
coherent tunnelling through the N/S/N structure. The other parameters used in the calculation
are EF/�0 = 10 [25] and kF L = 100. It is found that with z0 increased from zero to unity,
each peak in Rhe splits across, and in the tunnel limit (z0 = 2) each split peak becomes two
sharp peaks, corresponding to a series of bound states of quasiparticles in S. The positions
of these peaks are determined by k+L cos θ = nπ and k−L cos θ = nπ , and the minimum
between the two adjacent peaks is determined by (k+ − k−)L cos θ = (2n − 1)π with n a
positive integer, as has been discussed in [15]. These bound states are the results of quantum
interferences in the S well between electron-like quasiparticles and those between holelike
ones, respectively. The transport coefficients depend to a great extent on the orientation of the
crystal of the d-wave S. The main difference between α = θ = 0 and α = θ = π/4 is that for
the latter there is a zero-bias peak (ZBP) in the AR coefficient since the effective pair potentials
felt by the electron-like excitation and holelike excitation have opposite signs. The ZBP splits
across gradually with increasing z0. For α = 0, there is no ZBP in the AR coefficient, and all
the coefficients as a function of E are very similar to those in the s-wave case [15].

Figure 3 shows numerical results for transport coefficients as a function of thickness L of
the middle S (the left-hand column for α = θ = 0 and the right-hand one for α = θ = π/4)
with different z0 at E = 0. It is found that for very small L, Ree plus Te′e is almost equal
to unity and Rhe = Th′e = 0. In this case, the quasiparticle can directly tunnel through the
S interlayer without creation or annihilation of Cooper pairs. Except in the case of z0 = 0,
all the coefficients exhibit oscillatory behaviour with L, the oscillation amplitude increasing
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Figure 2. Reflection and transmission probabilities for Rhe, Ree , Te′e, and Th′e as a function of
E/�0 at zero temperature for θ = α = 0 in the left-hand column and θ = α = π/4 in the
right-hand column. Here EF/�0 = 10 and kF L = 100.

with increasing z0. With L increased, the oscillation vanishes gradually, indicating that the
quantum interference effects in S may be neglected if L is large enough. For larger z0 and
L, the normal reflection coefficient Ree is close to unity, the AR coefficient Rhe is small, and
the others are zero for α = 0; while Rhe is approaching unity and Ree is almost vanishing for
α = π/4. Such a difference also comes from the crystal-orientation effect of the d-wave S.

3. Tunnelling conductance

Once all the transmission and reflection probabilities are obtained, we can calculate currents
in response to a difference in the chemical potential between the two Ns. Assume µL and
µR to be the chemical potentials of the left- and right-hand N electrodes, respectively, and µ

the chemical potential of S. Under the bias voltage V (eV = µL − µR) applied to the N/S/N
structure, and taking into account the four processes shown in figure 1, we get the current from
the left-hand N into S as

IL = 2e

h

∫ ∞

0
dE

∫ π/2

0
dθ [ f0(E − eφ1)(1 − Ree + Rhe) + f0(E − eφ2)(Thh′ − Teh′)

+ f0(E + eφ1)(−1 − Reh + Rhh) + f0(E + eφ2)(The′ − Tee′)] cos θ, (6)
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Figure 3. Reflection and transmission probabilities for Rhe, Ree , Te′e, and Th′e as a function of
kF L at zero temperature for θ = α = 0 in the left-hand column and θ = α = π/4 in the right-hand
column. Here EF/�0 = 10 and E = 0.

where f0(E) is the Fermi distribution function, eφ1 = µL − µ, and eφ2 = µ − µR. Similarly,
the current from S to the right-hand N is given by

IR = 2e

h

∫ ∞

0
dE

∫ π/2

0
dθ [ f0(E − eφ1)(Te′e − Th′e) + f0(E − eφ2)(1 − Rh′h′ + Re′h′)

+ f0(E + eφ1)(Te′h − Th′h) + f0(E + eφ2)(−1 − Rh′e′ + Re′e′)] cos θ. (7)

The current continuous condition requires IL = IR, from which µ is obtained as
µ = (µL + µR)/2. Using the probability conservation conditions Ree + Rhe + Te′e + Th′e = 1,
Reh + Rhh + Te′h + Th′h = 1, Re′e′ + Rh′e′ + Tee′ + The′ = 1, and Re′h′ + Rh′h′ + Teh′ + Thh′ = 1, we
obtain

I = 2e

h

∫ ∞

0
dE

∫ π/2

0
dθ cos θ(Rhe + Reh + Te′e + Th′h)

[
f0

(
E − eV

2

)
− f0

(
E +

eV

2

)]
.

(8)

The differential conductance is given by

G = G0

8kBT

∫ ∞

0
dE

∫ π/2

0
dθ cos θ(Rhe + Reh + Te′e + Th′h)W, (9)
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(a)

(b)

Figure 4. Differential conductance as a function of the bias voltage at zero temperature for α = π/4
(a) and α = 0 (b). Here EF/�0 = 10 and kF L = 50.

with G0 = 2e2/h and

W = cosh−2

(
2E − eV

4kBT

)
+ cosh−2

(
2E + eV

4kBT

)
. (10)

At zero temperature, the differential conductance is reduced to

G = G0

∫ π/2

0
dθ cos θ(Rhe + Reh + Te′e + Th′h)E=eV . (11)

Figure 4 shows the differential conductance G as a function of bias voltage eV/�0 for
different z0 at zero temperature, in which α = π/4 (a) and α = 0 (b). For z0 = 0, the value
of G/G0 is constant and equal to two. This result stems from the fact that the coefficients in
equation (11) satisfy Rhe + Te′e = 1 and Reh + Th′h = 1, as shown in figure 2. As z0 is increased,
the magnitude of G decreases, but the oscillation amplitude increases due to the enhancement
of quantum interference effects in S. At finite z0, a main difference between α = π/4 and 0 is
that the ZBCP appears for α = π/4, but does not for α = 0. For eV > �0, the differential
conductances in both cases are similar to each other.

In order to further clarify features of ZBCP in the N/d-wave S/N junctions, we plot in
figure 5 the zero-bias conductance as a function of L for different z0 with α = π/4 (a) and
α = 0 (b). Several interesting features can be found. First, G(V = 0) exhibits damped
oscillatory behaviour with increasing L, the oscillation period equal to π/kF. The oscillating
behaviour arises from the quantum interference effects of quasiparticles in S at the Fermi
level. Second, with increasing barrier strength z0, the magnitude of G(V = 0) is gradually
lowered due to the suppression of the AR. Third, in the α = π/4 case, the magnitude of
G/G0 shows a rising tendency with L, approaching two. This behaviour is similar to that in
the N/d-wave S junction. In the case of α = 0, however, the magnitude of G/G0 shows a
lowering tendency with L, and it will become zero if both z0 and L are sufficiently large. This
difference again indicates that the appearance of the ZBCP depends on the orientation of the
crystal of the d-wave S. In figure 6, we plot the zero-bias conductance as a function of L with
different temperatures T/Tc. It is found that the zero-bias conductance is always decreased
with increasing temperature.
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(a)

(b)

Figure 5. Zero-bias conductance as a function of kF L at zero temperature for α = π/4 (a) and
α = 0 (b) with EF/�0 = 10.

(a)

(b)

Figure 6. Zero-bias conductance as a function of kF L at different T/Tc for α = π/4 (a) and α = 0
(b). Here EF/�0 = 10 and z0 = 0.5.

4. Conclusion

We have studied the coherent tunnelling transport in the N/d-wave S/N double tunnel junctions.
The expression for the tunnelling current through the junction is derived by simultaneously
taking into account the electron-injected current from one N electrode and the hole-injected
current from the other. The quantum interference effects of quasiparticles in the S interlayer
give rise to oscillations of the reflection and transmission probabilities as well as the tunnelling
conductance with energy. The tunnelling conductance depends strongly on the orientation of
the crystal of the d-wave S. For α = π/4, there appears a ZBCP, an important signature of the
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d-wave S. The magnitude of the zero-bias conductance is gradually lowered with increasing
barrier strength and/or temperature, exhibiting damped oscillatory behaviour with thickness
of S. Since the coherent length of the d-wave S is much shorter than that of the s-wave S, for
small thickness of S (e.g., kF L = 100), quasiparticle transport coefficients and differential
conductance exhibit characteristic oscillations in N/d-wave S/N double tunnel junctions. In
N/s-wave S/N structures, however, only when the thickness of S is taken as very large (e.g.,
kF L = 10 000) will there be characteristic oscillations in quasiparticle transport coefficients
and differential conductance [15]. Also, there is a ZBCP formed in the N/d-wave S/N tunnel
junctions, while no ZBCP appears in the N/s-wave S/N structure. These features may be used
to distinguish between d-wave and s-wave Ss. The N/d-wave S/N structures can be made with
the development of nanofabrication technique and the improvement of experimental methods.
It is expected that the theoretical results obtained will be confirmed in a future experiment.
Oscillations of the differential conductance with the period of geometrical resonance could
be used for spectroscopy of quasiparticle excitations in S. The present work is an extension
of the Blonder–Tinkham–Klapwijk (BTK) approach [26] to the N/S/N double junction. In
this double junction, if the thickness of S is longer than the coherent length, there will be a
sequent tunnelling, in which the BTK approaches are readily applied to the two independent
junctions. In the present coherent tunnelling, the extension of the BTK is never trivial [15, 16];
the quasiparticle interference and resonant tunnelling play an important role. In the present
model, we have neglected the spatial variation of the pair potential in S due to proximity effects,
scattering effects of interface roughness, and nonequilibrium effects. Inclusion of these effects
would be necessary for a complete theory, which merits further study.
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